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Abstract-The exactsolution of the Nusselt'smodelof the cross-flow recuperator obtained by the use of the
Mikusinski operator calculus is presented in this work. The solution enables formulas for basic recuperator
parameters 10 bederived.Thus it isno longernecessaryto performcalculations usingformulasforthecounter-

flowrecuperator and the appropriate correction factors.

l\"O:\IEl'\CLATURE

a parameter, kF/WI

b parameter, kF/W2

Bes; family of functions of two variables defined
by double power series (10)

BSn family of functions of two variables defined
by double power series (17)

f integrable function prescribed as a
boundary condition

F heat transfer surface
g integrable function prescribed as a

boundary condition
k constant coefficient of heat transfer or an

integer
II integer number
<20 thermal load of recuperator
SI operator I/{l} with respect to the

variable n
S2 operator I/{ I} with respect to the

variable ~

T medium temperature
W medium heat capacity
x dimensional coordinate
y dimensional coordinate

Greek symbols
IX real number
'1 dimensionless coordinate, y/Yo
~ dimensionless coordinate, x/xo
11\ efficiency of recuperator
e dimensionless temperature,

(T - T;J/(T'I - T;)
It,P, (j) integration variables or parameters

Subscripts
I value of heating medium parameters
2 value of cooling medium parameters
III mean value of the media temperature

difference
o maximum value of the dimensional

coordinate

Superscripts
inlet value of the medium temperature
outlet value of the medium temperature

I. li'OTRODUCTION

AN ANALYSIS of the two-media cross-flow recuperator is
presented. The theory of this recuperator type was
initiated by Nusselt [I, 2]. In Nusselt's approach, the
mathematical model consists of a system of first-order
linear partial differential equations with constant
coefficients. This system of equations is usually
transformed into a Volterra integral equation of the
second kind with difference kerneI.1t may be solved by
Picard's method of successive approximations.
Nusselt's method is often adduced in classical
monographs on heat transfer theory [3].

In the present paper, a different method of solving the
recuperator bal ance energy equations is demonstrated.
The system of differential equations is not transformed
into a Volterra integral equation. It is instead solved
immediately using Mikusinski's operational calculus
[4]. In this way the exact solution of the problem is
obtained. It is shown that this solution can be expressed
in the form of a convolution ofanalytic functions with
known functions as boundary conditions.

Such a form of solution enables formulas for the
effective calculation of basic recuperator parameters,
such as thermal load, efficiency, mean temperature
difference and total surface, to be found.

2. FORl\IULATlOl'\ OF THE PROBLEM

Formulating the mathematical model of two-media
cross-flow recuperator, we assume the following
simplifications :

(I) The heat transfer surface is considered to be a
rectangular plate, F = XoYo.

(2) Heat transfer between the heating and cooling
media takes place only in the transverse direction and
heat conduction along the plate is negligible.

(3) Heat capacities of the media WI and W2 and the
heat transfer coefficient are constant along the flowing
paths of the medi a.

(4) Heating and cooling media are flowing across
the channel cross-sections Xo and Yo at uniformly
distributed velocities.

(5) The gradient of the temperature exists only in the
direction transverse to the media flow paths.
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(1)

The model considered is shown by Fig. 1. The
assumed simplifications are identical to the assump
tions made in a similar case by NusseIt [1,2].

Taking into account these simplifications and
introducing the dimensionless variables defined in the
nomenclature, we obtain the mathematical model of
the considered recuperator in the form of the following
set of differential equations:

e018f = -a01 +a02,

0°2
-- = b01-b02•

a'l
The boundary conditions associated with this set of
equations are as follows:

thus obtaining

b 1
{02(e, lI>} =--b {01(e,II>}+-+b g(e). (5)

SI + SI

Taking into account equation (5), we can rewrite the
first equation of the system (1) in operator form as

d{01(e,I1)} = (-a+ ~){01(e'I1)j+_a_g(eJde s,+b s,+b
(6)

arriving at the solution [5]

{0 1(e,I1)} = e[-a+(ab/Sl+b)J~{f('l)}

+a r~_l_g(w)e[-a+(ab/"+b)J(~-",)dw. (7)
Jo SI +b

In order to determine the temperature distribution of
the heating medium, let us write the second equation of
the system (1) in the operator form

sl{02(e,II)}-g(e) = b{01(e,I1)}-b{0ie,lI>} (4)

3. ANALYTIC SOLUTION BY THE

l\IIKUSINSKI OPERATOR CALCULUS

The above formulated problem may be solved using
Mikusinski operator calculus [4].

Assume that the boundary conditions (2) are of the
form

0 1(e = 0,11) = 1,

O2(e,11= 0) = 0.

0 1(e == 0,11) = f(I]},

0ie,II = 0) = gW.

(2)

(3)

The formula (7) can be rewritten in the form

0 1(e,I1) = e-a~f('l)+ S:f(P)e-[a~+b(~-p)J

x Besl(abe,I1-p)dp+a f: g(w)e-[a(~-"')+b~)

x Beso(ab(e-w),II)dw (8)

in view of the relations

_1_ e[-a+(ab/'I +b)J(~-",)
s,+h

= {e-[a(~-"')+b~)Beso(ab(e-W),I1)},

e[-a+(ab/,,+b»)~_e-a~ = {e-(a~+b~)Bes,(abe,I1)} (9)

where [6]

df co eH nl1 k

Besn(e,I1) = I , I (10)
k=max(-n,O) (k+n).k.

T

T'1

o ~

Xo

T"
2

FIG. 1.The model of the two media cross-flow recuperator [3].
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and of the definition of a convolution

e - (Q~ +b~)BesI (ab~, 11l.!(II)

= J: c-la~+b(~-l'lIBesl(ab~,II-Jl)!(jl)dJl. (11)

The temperature distribution of the cooling medium
can be found in an analogous way, i.e. by rewriting the
first equation of the system (I) in an operator form and
determining the value of {01(~,1/)}. Next, substituting
the value of {0 1(e, l})} into the second equation of the
system (I) we obtain an operator differential equation

d {02(~,1})} = (~-b){02C~'I/)} +._b_!(I/).
d" S2+a S2+a

(12)

Making use of the relations (9) and the formula

e-(a~+b~)Bes I(abll, ~)*g(~)

= f: g(p) e-la(~-p)+b~lBesl(abll, ~ - p)dp (13)

we get the temperature distribution of the cooling
medium in the form

02(~,II) = e-b~g(~)+f: g(p)e-Ia(~-pl+b~l

x Besl(abll,~-p)dp+b f:!(p)e-la~+b(~-P)J

x Beso(ab(1/ - p),~ dp. (14)

The solutions (8) and (14) are general in the sense that
they remain valid for many various boundary
conditions. The problem considered has been reduced
to the calculation of integrals of functions which are
products of analytic functions and of some known
functions occurring in the boundary conditions (3).

Now assume that boundary conditions are of the
form (2), that is

gives

(19)

(20)

aBs.(~,II) _ B (~)
a~ - S._I ,II.

aBs.(e",) _ (1')a - Bs; + I '" II
'I

0 1(e" ,) = l_e-(a~+b~l BSI(a~,blll,

02(~,11) = I_e-(a~+b~) Bso(ae,b'I).

Making use of the formulas

fe-~BsI({.II)d" = e-~[IIBsI({,II)-eBLI(~,II)]
(22)

one can verify that the solutions (19) satisfy both the
system differential equations (I) and the boundary
conditions (2).

Taking into account (19) and using the formula

Qo = WI(r'I - T;)

x {~+e-(a+b{BSI(a,b)-~BLI(a,b)J}. (23)

4. BASIC RECUPERATOR CHARACTERISTIC

Using the solution obtained in Section 3 basic
recuperator parameters can now be determined.

It is relatively easy to prove that the thermal load of
the recuperator is given by

one can calculate the integrals occurring in (16). In this
way we get a final form of the solution of the problem
(1,2)

(15)
!(I/) = I,

g(~) = o.

and taking into account the formula

f e'~ Bes.(e, II) dll =

-(-ex)·-I e'~Bs.(-~, -exll). ex =I- 0 (18)

In this case, we arrive at the formulas

0 1(e, ll) = e-a~+e-(a:+b~) f: ebl' Besl(ab~,I/-Jl)dJl,

(16)

02C~,'1l = b e-(a~+b~l J: ebpBeso(ab('I-p),&)dp.

Defining a new family offunctions [6]

By comparing equation (23) with equation (24) one
obtains

(24)

(25)

From the tables of functions Bs.(e, II) it is possible to
calculate the mean temperature difference and the
thermal load of the recuperator or its total surface if the
thermal load is given.

It is also possible to obtain expressions for
calculating of media mean temperatures in the

It is known, however, that there is relation between the
thermal load and mean temperature difference

(17)
co ~m m-. 'Il

Bs.(e, II) = L - L -
m=mu(O,.) m! l=O k!
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(26)

recuperators' outlets:

T'; = T', - (T', - Tz)

x {~+e-(Q+b{Bs,(a, b)- ~ BL ,(a, b)]},

b
T~ = T; + - (T', - T;)

a

x {~+e-<a+b{Bs,(a,b)- ~ BL ,(a, b)]}.

Hone replaces parameters a and b by the set of those of
P and R,

T~-T; -<a+bl[b JP = T',- T; = 1+e -;; Bs,(a, b)-BL ,(a, b) ,

(32)

(33)O<I>k J = C<I>k I = 1
as s=o ca a=O '

lim <I>k = t-e-s,
R-",

5. C01l<CLUSI01I<S

then the efficiency <I>k is expressed by

e, = R+e-<S+SIR)[BS,(S,~)-RBS_,(S,~)J (31)

The relation <I>k vs S with the parameter R is shown in
Fig. 2.

Taking into account the following expressions:

Bs.(O,I/) = 0, /I > 0,

Bso(O,b) = BL,(O,b) = eb
,

Bs_,(S,O) = eS,

one can derive the following relations:

lim <I>k = lim <I>k = 0,
s-o 0-0

The presented analysis method makes it possible to
obtain the exact solution of the Nusselt's model of the
cross-flow recuperator without the need to transform
the set of balance equations (1) into a Volterra integral
equation and apply the arduous method of the
successive approximations.

Mikusinski's operational calculus, used for resolving
the problem (1, 2), is more useful than Laplace
transformations because it is easier to proceed from the
operator form of the solution to its functional form.

The solution obtained, which is a convolution of
analytic functions with those defined as the boundary

which do not depend on the recuperator design. Thus
the relations given above must be also correct for the
cross-flow recuperator under consideration.

(28)

(27)

(30)

(29)=~ +e-<Q+b{Bst(a,b)- ~BL,(a,b)J

H the parameter P is replaced by

kF
S=-=a

W,

(T,- T2 )m 1
T' T' =-PR,
,- 2 a

<20 = Wt(T',-T;)PR.

then

T' -T"
<I> -' , = PR
k-T',-Tz

T1- T'; a
R =---=-_....:.

T~-T; b

The efficiency of the recuperator is given by

R=O.5

R= 1.

R=o.75

S.5 S

=O.2t;

R =2.5

3.2.

FIG.2. The efficiency of the cross-flow recuperaIor as a function of the parameters Sand R.
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conditions, enables all funct ionsfand 9 (3) to be taken
into account.

The exact solution of the problem (1, 2) has made it
possible to derive the formulas for basic cross-flow
recuperator parameters. Thus it is not necessary to
perform calculations using formulas for the counter
flow recuperator and the appropriate correction
factor s.

II should be noted that, making use of a real or
complex tran sformation, one can reduce linear parti al
differential equations of the hyperbolic and elliptic type
in the domain of two variables into a set of first-order
partial differential equations with constant coefficients.
The exact solution of such a set can then be obtained
using the method presented in this paper.
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LA SOLUTION EXACTE DU MODELE DE NUSSELT DU RECUPERATEUR A
COURANTS-CROISES

Resume On presente la solution exacte du modele de Nussclt du recuperateur a courants-croises avec
brassage qui est obtenue :i l'aide du calcul operationnel de Miku sinski. Ceue solution permet aetablir des
formules lesquelles peuvent eire appliquees directement dans un calcul des parametres fondamentaux de ce
type de recuperateur, Done, Ie cal cul comme s'il s'agissait d 'un recuperatcur a contre-courant et puis une

util isation des facteurs de correction n'est pas necessaire.

EXAKTE LOSUNG DES NUSSELTSCHEN PROBLEMS FOR DEN
KREUZSTROMWARMEAUSTAUSCIIER

Zusammenfassung-In vorge1egtem Bericht ist die exakte Losung fijr den Wiirmedurchgang im
Kreuzstromaustauscher ang egeben. Dieses Pr oblem, das zuerst von Nu sselt formuliert wurde, ist mittels der
Operatorenrechnung von Mikusinski gelost worden. Die an gegcbcne Losung errnogl icht auch das
Konstruieren einen entsprechendcn Formel Iilr die Berechnung der Grundparameter des
Wiirm eaustauschers . Man kann al so allein mit Hilfe dieser Formel die notwendige Berechnung durchfuhren,

ohne das bis jetzt giill ige Losungsverfahren zu benutzen.

AHAJHITll4ECKOE PEllIEHHE HYCCEJlbTOBCKOfi MOll.EJlH
nEPEKPECTHOT04HOrO PEKynEPATOPA

AHHOT3U"1l-B nacroameii pafiore npencraaneuo anamrruxecxoe peuienue Hyccern.roacxoii xronenu
lIepeKpeCTHOTO'lHOrO pexyneparopa nonysenoe nyrext npnsreuenaa ncsucneuna oneparopos MIIKYCIIIIC
xoro, Taxoe peurenne noaaonser na auaoa lj>0p~lyn npenOCTaB.1111Q1lllIX B03~1O)f(1I0CTb uenocpencrnen
1I0ro pacsera rnaauux napaxrerpoa ororo pcxyneparopa. Flonyvennsre lj>OP~IY,1bI ~lOrYT 6b1Tb

ucnonsaosauu nenocpencraenno B~ICCTO pacxeroa KaK lL111 pexyneparopa IIPOTlIBOTO'lIlOro runa II
npuxte ueuus COOTBCTCTBYlOllllIX xoxpuuueuroe.




