Int. J. Heat Mass Transfer. Vol. 26, No. 11, pp. 1597-1601, 1983
Printed in Great Britain

0017-9310,83$3.00 +0.00
Pergamon Press Ltd.

THE EXACT SOLUTION OF THE NUSSELT'S MODEL OF THE

Bes,

Bs,

n

Qo

5

S2

CROSS-FLOW RECUPERATOR

JaN LAcH
Department of Reactor Engineering, Institute of Nuclear Research, 05-400 Otwock-Swierk, Poland

(Received 25 October 1982)

Abstract—The exact solution of the Nusselt's model of the cross-flow recuperator obtained by the use of the

Mikusinski operator calculus is presented in this work. The solution enables formulas for basic recuperator

parametersto bederived. Thusitis nolonger necessary to perform calculations using formulas for the counter-
flow recuperator and the appropriate correction factors.

NOMENCLATURE 1. INTRODUCTION
parameter, kF/W; AN ANALYSIS of the two-media cross-flow recuperator is
parameter, kF/W, resented. The theory of this recuperator type was
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family of functions of two variables defined

by double power series (10)
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by double power series (17)
integrable function prescribed as a
boundary condition

heat transfer surface

integrable function prescribed as a
boundary condition

constant coefficient of heat transfer or an
integer

integer number

thermal load of recuperator
operator 1/{1} with respect to the
variable 5

operator 1/{1} with respect to the
variable ¢

medium temperature

medium heat capacity
dimensional coordinate
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¢
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real number

dimensionless coordinate, y/y,
dimensionless coordinate, x/x,
efficiency of recuperator
dimensionless temperature,

(T—TIT,—T3)

4, p, w integration variables or parameters

Subscripts

1

value of heating medium parameters

2 value of cooling medium parameters
m mean value of the media temperature
difference
0 maximum value of the dimensional
coordinate
Superscripts

’

"

inlet value of the medium temperature
outlet value of the medium temperature

initiated by Nusselt [1, 2]. In Nusselt’s approach, the
mathematical model consists of a system of first-order
linear partial differential equations with constant
cocfficients. This system of equations is usually
transformed into a Volterra integral equation of the
second kind with difference kernel. It may be solved by
Picard’s method of successive approximations.
Nusselt’s method is often adduced in classical
monographs on heat transfer theory [3].

In the present paper, a different method of solving the
recuperator balance energy equations is demonstrated.
The system of differential equations is not transformed
into a Volterra integral equation. It is instead solved
immediately using Mikusinski’s operational calculus
[4]. In this way the exact solution of the problem is
obtained. Itisshown that thissolution can be expressed
in the form of a convolution of analytic functions with
known functions as boundary conditions.

Such a form of solution enables formulas for the
effective calculation of basic recuperator parameters,
such as thermal load, efficiency, mean temperature
difference and total surface, to be found.

2. FORMULATION OF THE PROBLEM

Formulating the mathematical model of two-media
cross-flow recuperator, we assume the following
simplifications :

(1) The heat transfler surface is considered to be a
rectangular plate, F = x¢¥,.

(2) Heat transfer between the heating and cooling
media takes place only in the transversc direction and
heat conduction along the plate is negligible.

(3) Heat capacities of the media ¥, and 1V, and the
heat transfer coefficient are constant along the flowing
paths of the media.

(4) Heating and cooling media are flowing across
the channel cross-sections xo, and y, at uniformly
distributed velocities.

(5) The gradient of the temperature exists only in the
direction transverse to the media flow paths.
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The model considered is shown by Fig. 1. The
assumed simplifications are identical to the assump-
tions made in a similar case by Nusselt [1, 2].

Taking into account these simplifications and
introducing the dimensionless variables defined in the
nomenclature, we obtain the mathematical model of
the considered recuperator in the form of the following
set of differential equations:

ng’ = —a0,+a0,,

. ¢Y)
2 = b0, —bO,.

on

The boundary conditions associated with this set of
equations are as follows:

@l(f = O’ ']) = l,
¢ n=0)=0.

@

3. ANALYTIC SOLUTION BY THE
MIKUSINSKI OPERATOR CALCULUS

The above formulated problem may be solved using
Mikusinski operator calculus [4].

Assume that the boundary conditions (2) are of the
form

(& =0,m= 1),
Q,(&n = 0) = g(£).

In order to determine the temperature distribution of
the heating medium, let us write the second equation of
the system (1) in the operator form

5:{©(& M} —g(8) = b{O (&M} —b{O:& )} @)

€
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thus obtaining

b 1
{008} = S4b {0} + mg(ﬁ)- G

Taking into account equation (5), we can rewrite the
first equation of the system (1) in operator form as

d {Ol(éa '])} =

ab a

()
arriving at the solution [5]

{O4(& n)} = el7ar CROR{ f(n)}

L |
+aj Py g(w)e[—a+(nb/n+b)l(¢—w) dw. (7)
0 91

The formula (7) can be rewritten in the form

04(6m) = e'“¢f(q)+rf(,1)e—tn<+b<n—m
]

4
X Bes,(ab,n—p)dp+a j glw)e e —w)+bn)
0

X Besg(ab(é—w),n)dw (8)
in view of the relations

1

el —a+(ab/s; +B)({-w)
Si+b

= {e71 = MBesg(ab(¢ — ), )},
el—at(ab/si+b))5__a—af {e""‘”’"’Bes,(abé, ,1)} (9)

where [6]

@ k+n, k
Besqe® ¥

k=max(~n,0) (k+n)k! (10)
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Fi1G. 1. The model of the two media cross-flow recuperator [3].
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and of the definition of a convolution

e~ @ Bes (ab&, n)+f ()

n
- J eI+~ M1Bes, (abé,n— ) (1) . (1)
]

The temperature distribution of the cooling medium
can be found in an analogous way, i.e. by rewriting the
first equation of the system (1) in an operator form and
determining the value of {@,(£,#)}. Next, substituting
the value of {©,(&, 1)} into the second equation of the
system (1) we obtain an operator differential equation

d{el(é’ 'l)} _ ( ab
dy " \s;+a

b
—b){@z(fy m}+ mf('l)-
(12)
Making use of the relations (9) and the formula

e~ @+ Bes (aby, E)*g(&)

¢
=J‘ glp)e eGP+t Bes, (aby,E—p)dp  (13)
[}

we get the temperature distribution of the cooling
medium in the form

¢
O,(&,n) = e P1g(§) +J glp)e 1o -9 +bal
0

7
b Besl(ab)],f—p)dp-{-b-[ f(p)elas+bta=pn
0

x Besq(ab(n—p),)dp. (14)

The solutions (8) and (14) are general in the sense that
they remain valid for many various boundary
conditions. The problem considered has been reduced
to the calculation of integrals of functions which are
products of analytic functions and of some known
functions occurring in the boundary conditions (3).

Now assume that boundary conditions are of the
form (2), that is

fm) =1,
g(g)=0.

In this case, we arrive at the formulas

(15)

n
91(6)’1) = e—a{+e-(a$+bq)J eb" Besl(abérn_#) d#r
0
(16)
n
O)&n)=be “’"’I ¢ Besq(ab(n— p),€)dp.
0

Decfining a new family of functions [6]

= ¥ S¥L )
S" M= m=max(0,n) nl! k=0 k!
and taking into account the formula
'[ ¢* Bes, (£, ) dip =
n—1 .z é
—(—a)*~! e*Bs, —;,—an , a#0 (18)
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one can calculate the integrals occurring in (16). In this
way we get a final form of the solution of the problem

1,2
O,(§, 1) = 1—e~ @ Bs, (ag, b),

(19)
0,(&,n) = 1 —e~ P Bse(ag, by).
Making use of the formulas
dBs,(¢&,
% = Bs,_4(&1),
(20)
0Bs, (&,
—a(f_]) = Bsn+ 1(57 ’l)
H

one can verify that the solutions (19) satisfy both the
system differential equations (1) and the boundary
conditions (2).

4. BASIC RECUPERATOR CHARACTERISTIC

Using the solution obtained in Section 3 basic
recuperator parameters can now be determined.

It is relatively easy to prove that the thermal load of
the recuperator is given by

1
Qo = W(T1—T)) L [1-041Lmn]dy. (1)

Taking into account (19) and using the formula

Je‘”le(é, ndn = e™"[yBs,(&,n)—¢Bs - (&, m)]
(22)

gives

Qo = W(T1—T2)

a

y {g Fem@D [le(a, b)—7 Bs_a b)]}. (23)

It is known, however, that there is relation between the
thermal load and mean temperature difference

Qo = k(Ty = T)uF. 24
By comparing equation (23) with equation (24) one
obtains

T,—T, 1
H = ;{g +e@*d [Bs,(a, b)— %BS_ 1(a, b)]}.
1— 17

25

From the tables of functions Bs,(&, ) it is possible to
calculate the mean temperature difference and the
thermal load of the recuperator orits total surface if the
thermal load is given.

It is also possible to obtain cxpressions for
calculating of media mean temperatures in the
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recuperators’ outlets:

T, =T,—(T\—T53)
{b +e""“”[Bs (a,b)— -Bs Wa, b)]}

b
T =Ty+ - (Ty—Tj)

{b +e"“‘“”[Bs (a,b)— Bs ia, b):l}

If one replaces parameters a and b by the set of those of
P and R,

(26)

T5~T5% _ b
P= = @+t _ B —Bs_
Trl_Trz 1+e [a Sl(ai b) S l(a’ b)]7
R T-Ti_a 27
TII I b
then
(hi—-T). !
————=—PR,
T,—T5 a
(28)
Qo = W(Ty,— T3 PR.

The efficiency of the recuperator is given by
T’ T

Q=g

= PR

=% +e_("+”)|:le(‘7v b)_%BS—l(aib)]' (29)

If the parameter P is replaced by
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then the efficiency &, is expressed by

S S
(I)k.—:R+e—(S+S/R)l:BSI(S R) RBs_ 1( )] 3y

The relation @, vs S with the parameter R is shown in
Fig. 2.
Taking into account the following expressions:

Bs,(0,1) =0,
Bsq(0,b) = Bs_(0,b) = €,
Bs_,(8,0) = ¢,

n>0,

(32)

one can derive the following relations:

hm ®, =1lim®, =0,

a0

G(D,‘

cd, 1
5=0 6“ a=0 ’

aS-
-5

lim @, =1-e7>,

R—~o

(33)

which do not depend on the recuperator design. Thus
the relations given above must be also correct for the
cross-flow recuperator under consideration.

5. CONCLUSIONS

The presented analysis method makes it possible to
obtain the exact solution of the Nusselt’s model of the
cross-flow recuperator without the need to transform
the set of balance equations (1) into a Volterra integral
equation and apply the arduous method of the
successive approximations.

Mikusinski's operationalcalculus, used for resoivmg
the problem (1, 2), is more useful than Laplace
transformations because it is easier to proceed from the
operator form of the solution to its functional form.

S= I\_F —a 30) The solution obtained, which is a convolution of
441 analytic functions with those defined as the boundary
%
1
83 pRzZ N
. R=2.5
8 G- Q(S' R) : =4,
7 R=A4.
N R=0.75
41 R=05
4
? a:/. R=0.25
.2 4
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F1G. 2. The efficiency of the cross-flow recuperator as a function of the parameters S and R.
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conditions, enables all functions fand g (3) to be taken
into account.

The exact solution of the problem (1, 2) has made it
possible to derive the formulas for basic cross-flow
recuperator parameters. Thus it is not necessary to
perform calculations using formulas for the counter-
flow recuperator and the appropriate correction
factors.

It should be noted that, making use of a real or
complex transformation, one can reduce linear partial
differential equations of the hyperbolic and elliptic type
in the domain of two variables into a set of first-order
partial differential equations with constant coefficients.
The exact solution of such a set can then be obtained
using the method presented in this paper.
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LA SOLUTION EXACTE DU MODELE DE NUSSELT DU RECUPERATEUR A
COURANTS-CROISES

Résumé On présente la solution exacte du modéle de Nusselt du récupérateur & courants-croisés avec

brassage qui est obtenue 4 I'aide du calcul opérationnel de Mikusinski. Cette solution permet a établir des

formules lesquelles peuvent étre appliquées directement dans un calcul des paramétres fondamentaux de ce

type de récupérateur. Donc, le calcul comme sil s’agissait d'un récupérateur a contre-courant et puis une
utilisation des facteurs de correction n’est pas nécessaire.

EXAKTE LOSUNG DES NUSSELTSCHEN PROBLEMS FUR DEN
KREUZSTROMWARMEAUSTAUSCHER

Zusammenfassung—In vorgelegtem Bericht ist die exakte Losung fir den Wiirmedurchgang im
Kreuzstromaustauscher angegeben. Dieses Problem, das zuerst von Nusselt formuliert wurde, ist mittels der
Operatorenrechnung von Mikusinski gelost worden. Die angegebene Losung ermdglicht auch das

Konstruieren einen entsprechenden Formel

die Berechnung der Grundparameter des

Wirmeaustauschers. Man kann also allein mit Hilfe dieser Formel die notwendige Berechnung durchfiihren,
ohne das bis jetzt giltige Losungsverfahren zu benutzen.

AHANMUTHUYECKOE PEWIEHUE HYCCENLTOBCKON MOJENU
NMEPEKPECTHOTOUHOI'O PEKVIIEPATOPA

AnHoTanHs—B HacTosweit paGoTe mpeacTasneHo aHaHTHYeckoe pewsenne HycceabTosekoil smonenn

NEPEKPECTHOTOMHOTO PEKYNIEPATOPA MONY4ENOe MYTEM NPHMEHEH IS HCYHCIEHHS onepaTopos Mukyciuc-

koro. Taxoe peLicHNe N03BONAET HA BHIBOA GOPMYJI NPeIOCTABIAOUINX BO3MOXKHOCTb HEMOCPEACTBEH-

HOTO pacyeTa IIABHBIX MapaMeTpoB 3TOro pekynepatopa. IMosyuennble ¢dopmyant MoryT ObiTh

HCIIONB30BaHBl HEMOCPEACTBEHHO BMECTO PACETOB KaK [ peKyneparopa NPOTHBOTOYHOrO THNA M
NpiMeHeHHs COOTBETCTBYIOINX KOXPHLUHEHTOB.





